Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cardiovasc Pathol ; 62: 107460, 2023.
Article in English | MEDLINE | ID: mdl-35917906

ABSTRACT

Disturbed sleep or sleep loss due to vocational or lifestyle changes following MI is a common problem that may affect many physiological processes involved in left ventricle (LV) remodeling. Herein, we proposed that experience of sleep disruption and/or restriction after myocardial infarction (MI) may aggravate cardiac extracellular matrix remodeling and induce apoptosis in the cardiomyocytes. MI was induced in adult male rats by permanent ligation of the left anterior descending coronary artery. Twenty-four hours after surgery, some animals experienced chronic sleep restriction (CSR) for 6 days. Serum levels of CK-MB, PAB, and TNF-α were evaluated at days 1, 8, and 21 postsurgery. Twenty-one days after surgery, hemodynamic parameters and expression of MMP-2, MMP-9, TIMP-1, and TNF-α, as well as myocardial fibrosis and apoptosis in the noninfarcted area of the LV were assessed. Our results showed a clear decrease in serum concentrations of CK-MB, PAB and TNF-α at day 21 postsurgery in the MI group as compared to MI+SR animals in which these markers remained at high levels. CSR following MI deteriorated LV hemodynamic indexes and also impaired the balance between MMPs and TIMP-1. Further, it yielded an increase in oxidant and inflammatory state which caused deleterious fibrotic and apoptotic effects on cardiomycytes. Our data suggest post-MI sleep loss may cause adverse LV remodeling due to increased inflammatory reactions as well as oxidative burden and/or anti-oxidative insufficiency that in turn impede the balance between MMPs and their inhibitors.


Subject(s)
Myocardial Infarction , Sleep Deprivation , Ventricular Remodeling , Animals , Male , Rats , Matrix Metalloproteinases , Oxidative Stress , Sleep , Tumor Necrosis Factor-alpha
2.
Curr Res Physiol ; 5: 302-311, 2022.
Article in English | MEDLINE | ID: mdl-35856058

ABSTRACT

The prevalence of ventricular arrhythmias during general anesthesia is about 70%. In experimental studies on the antiarrhythmic effects of different agents, using anesthetic drugs that do not have any protective properties are preferable. The present study was conducted to investigate molecular mechanisms involved in the antiarrhythmic effects of ketamine/xylazine (K/X). Sixty male rats were assigned to eight groups: K/X, L -NAME (25-35 mg/kg) with thiopental (TP), L-NAME (25-35 mg/kg) with ketamine/xylazine, L arginine (100 mg/kg) with thiopental, L-arginine (100 mg/kg) with ketamine/xylazine. After anesthetic induction using TP or K/X, the animals were subjected to 30 min of ischemia. Hemodynamic parameters, ventricular arrhythmias during ischemia, the incidence of ventricular tachycardia (VT), and ventricular fibrillation (VF) were measured. Additionally, in order to assess nitrite/nitrate ratio and LDH after ischemia, serum samples were collected and used. Our results showed that in the K/X group, the number of VT and VF, duration of VT (p = 0.006), the severity of arrhythmias (p = 0.0179). There was no VF incidence in this group. These protective effects were faded by administration of L-NAME with K/X. The combination of L- Arginine in the TP group decreased the number and duration of VT (p < 0.001, p = 0.0013) with no incidence of VF in comparison with TP. L-arginine with K/X groups increased the number and duration of VT (p < 0.0001, p < 0.001) compared to K/X and VF was seen (100%). However, there was no significant difference between TP and K/X groups in terms of this nitrite/nitrate ratio. These findings suggest that the antiarrhythmic effects of ketamine/xylazine might be partially relative to the nitric oxide synthesis pathway.

3.
Pak J Pharm Sci ; 34(4): 1409-1414, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34799315

ABSTRACT

The present study was conducted to identify the effect of vasopressin (AVP) on electrocardiographic changes produced by ischemia-reperfusion. Male rats were divided into seven groups (n=8-13) subjected to 30min ischemia and 120 min reperfusion. In protocol I (control group), saline was administered before ischemia. In protocol II, different doses of AVP (0.015, 0.03, 0.06 and 0.12µg/rat) were infused 10 min before ischemia. In protocol III SR49059 (1 mg/kg), was injected 20 min prior to ischemia with and without the effective dose of AVP (0.03 g/rat). Ischemia-induced arrhythmia and myocardial infarct size (IS) were measured. Different doses of vasopressin decreased IS. There were no significant differences in PR, QRS duration and &DGR;T/amp;DGR;ST ratio between control and intervention groups in ischemia. ST elevation was significantly increased in control and AVP 0.015, 0.03, 0.06 groups during ischemia. In AVP 0.12 group there was no significant difference in ST deviation between the baseline and ischemia phase. JT interval was significantly increased in control and antagonist group during ischemia. AVP 0.12µ/rat prevented the increase of JT interval in ischemia compared to the baseline. In summary, AVP mediated preconditioning improved ST resolution, prevented prolongation of JT interval and decreased the likelihood of subsequently ventricular arrhythmia.


Subject(s)
Cardiotonic Agents/pharmacology , Myocardial Reperfusion Injury/physiopathology , Vasopressins/pharmacology , Animals , Cardiotonic Agents/therapeutic use , Dose-Response Relationship, Drug , Electrocardiography/drug effects , Male , Myocardial Infarction/physiopathology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Rats , Rats, Wistar , Vasopressins/therapeutic use
4.
Auton Neurosci ; 230: 102761, 2021 01.
Article in English | MEDLINE | ID: mdl-33310629

ABSTRACT

OBJECTIVES: Modulation of sympathetic activity during acute sleep deprivation can produce various effects on body functions. We studied the effects of acute sleep deprivation before ischemia/reperfusion on myocardial injury in isolated rat hearts, and the role of sympathetic nervous system that may mediate these sleep deprivation induced effects. METHODS: The animals were randomized into four groups (n = 11 per group): Ischemia- Reperfusion group (IR), Acute sleep deprivation group (SD), Control group for sleep deprivation (CON-SD) and Sympathectomy + ASD group (SYM-SD). In SD group, sleep deprivation paradigm was used 24 h prior to induction of ischemia/reperfusion. In SYM-SD group, the animals were chemically sympathectomized using 6-hydroxydopamine, 24 h before sleep deprivation. Then, the hearts of animals were perfused using Langendorff setup and were subjected to 30 min regional ischemia followed by 60 min of reperfusion. Throughout the experiment, the hearts were allowed to beat spontaneously and left ventricular developed pressure (LVDP) and rate pressure product (RPP) were recorded. At the end of study, infarct size and percentage of the area at risk were determined. RESULTS: We found that SD increased LVDP and RPP, while reducing the myocardial infarct size. Moreover, sympathectomy reversed SD induced reduction in infarct size and showed no differences as compared to IR. CONCLUSION: This study shows cardioprotective effects of acute sleep deprivation, which can be abolished by chemical sympathectomy in isolated hearts of rats.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Heart , Myocardium , Rats , Sleep Deprivation , Sympathetic Nervous System
5.
Eur J Pharmacol ; 887: 173590, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32976827

ABSTRACT

Following myocardial ischemia, the cardiac tissue undergoes both, physiological and pathological changes to compensate the initial loss of function. Long-term continuous adjustments often take a drastic picture indicated by deteriorated ventricular function. Morphine is commonly used for rescuing patients suffering a heart attack. Recent results from our laboratory showed the anti-remodeling potential of morphine. Here, we explored the effect of morphine treatment on gelatinolytic activity, apoptosis and myofibroblast density. The male Sprague - Dawley rats underwent ischemia via ligation of left anterior descending coronary artery and received morphine (3 mg/kg; i.p.) for five consecutive days. Seven days post-MI, morphine led to significant reduction in MMP - 2 activity, apoptotic cell death and fibroblast density. Morphine also reduced MI-induced rise in serum pro-oxidant antioxidant balance and nitrite levels on day 28th following the surgery. These results provide mechanistic insight for morphine - induced anti-remodeling effects.


Subject(s)
Analgesics, Opioid/therapeutic use , Apoptosis/drug effects , Fibroblasts/drug effects , Morphine/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Animals , Antioxidants/metabolism , Coronary Vessels/drug effects , Gelatinases/metabolism , Ligation , Male , Matrix Metalloproteinase 2/metabolism , Myocardial Reperfusion Injury/pathology , Nitrites/metabolism , Rats , Rats, Sprague-Dawley , Ventricular Remodeling/drug effects
6.
Arq Bras Cardiol ; 113(3): 401-408, 2019.
Article in English, Portuguese | MEDLINE | ID: mdl-31621780

ABSTRACT

BACKGROUND: Stress is defined as a complicated state that related to homeostasis disturbances, over-activity of the sympathetic nervous system and hypothalamus-pituitary-adrenal axis responses. Cardiac preconditioning reduces myocardial damages. OBJECTIVE: This study was designed to assess the cardioprotective effects of acute physical stress against ischemia/reperfusion (I/R) injury through the activation of the sympathetic nervous system. METHODS: Thirty-two male Wistar rats were divided into four groups; (1) IR (n = 8): rats underwent I/R, (2) Acute stress (St+IR) (n = 8): physical stress induced 1-hour before I/R, (3) Sympathectomy (Symp+IR) (n = 8): chemical sympathectomy was done 24-hours before I/R and (4) Sympathectomy- physical stress (Symp+St+IR) (n = 8): chemical sympathectomy induced before physical stress and I/R. Chemical sympathectomy was performed using 6-hydroxydopamine (100 mg/kg, sc). Then, the hearts isolated and located in the Langendorff apparatus to induce 30 minutes ischemia followed by 120 minutes reperfusion. The coronary flows, hemodynamic parameters, infarct size, corticosterone level in serum were investigated. P < 0.05 demonstrated significance. RESULTS: Physical stress prior to I/R could improve left ventricular developed pressure (LVDP) and rate product pressure (RPP) of the heart respectively, (63 ± 2 versus 42 ± 1.2, p < 0.05, 70 ± 2 versus 43 ± 2.6, p < 0.05) and reduces infarct size (22.16 ± 1.3 versus 32 ± 1.4, p < 0.05) when compared with the I/R alone. Chemical sympathectomy before physical stress eliminated the protective effect of physical stress on I/R-induced cardiac damages (RPP: 21 ± 6.6 versus 63 ± 2, p < 0.01) (LVDP: 38 ± 4.5 versus 43 ± 2.6, p < 0.01) (infarct size: 35 ± 3.1 versus 22.16 ± 1.3, p < 0.01). CONCLUSION: Findings indicate that acute physical stress can act as a preconditional stimulator and probably, the presence of sympathetic nervous system is necessary.


Subject(s)
Heart/physiology , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Coronary Circulation/physiology , Corticosterone/blood , Male , Rats , Rats, Wistar , Reperfusion Injury/physiopathology
7.
Arq. bras. cardiol ; 113(3): 401-408, Sept. 2019. graf
Article in English | LILACS | ID: biblio-1038546

ABSTRACT

Abstract Background: Stress is defined as a complicated state that related to homeostasis disturbances, over-activity of the sympathetic nervous system and hypothalamus-pituitary-adrenal axis responses. Cardiac preconditioning reduces myocardial damages. Objective: This study was designed to assess the cardioprotective effects of acute physical stress against ischemia/reperfusion (I/R) injury through the activation of the sympathetic nervous system. Methods: Thirty-two male Wistar rats were divided into four groups; (1) IR (n = 8): rats underwent I/R, (2) Acute stress (St+IR) (n = 8): physical stress induced 1-hour before I/R, (3) Sympathectomy (Symp+IR) (n = 8): chemical sympathectomy was done 24-hours before I/R and (4) Sympathectomy- physical stress (Symp+St+IR) (n = 8): chemical sympathectomy induced before physical stress and I/R. Chemical sympathectomy was performed using 6-hydroxydopamine (100 mg/kg, sc). Then, the hearts isolated and located in the Langendorff apparatus to induce 30 minutes ischemia followed by 120 minutes reperfusion. The coronary flows, hemodynamic parameters, infarct size, corticosterone level in serum were investigated. P < 0.05 demonstrated significance. Results: Physical stress prior to I/R could improve left ventricular developed pressure (LVDP) and rate product pressure (RPP) of the heart respectively, (63 ± 2 versus 42 ± 1.2, p < 0.05, 70 ± 2 versus 43 ± 2.6, p < 0.05) and reduces infarct size (22.16 ± 1.3 versus 32 ± 1.4, p < 0.05) when compared with the I/R alone. Chemical sympathectomy before physical stress eliminated the protective effect of physical stress on I/R-induced cardiac damages (RPP: 21 ± 6.6 versus 63 ± 2, p < 0.01) (LVDP: 38 ± 4.5 versus 43 ± 2.6, p < 0.01) (infarct size: 35 ± 3.1 versus 22.16 ± 1.3, p < 0.01). Conclusion: Findings indicate that acute physical stress can act as a preconditional stimulator and probably, the presence of sympathetic nervous system is necessary.


Resumo Fundamento: O estresse é definido como um estado complicado de distúrbios da homeostase, hiperatividade do sistema nervoso simpático e das respostas do eixo hipotálamo-hipófise-adrenal. O pré-condicionamento cardíaco diminui os danos do miocárdio. Objetivo: Esse estudo avaliou os efeitos cardioprotetores do estresse físico agudo contra a lesão por isquemia-reperfusão (I/R) através da ativação do sistema nervoso simpático. Métodos: Trinta e dois ratos machos Wistar foram divididos em quatro grupos; (1) IR (n = 8): ratos submetidos a I/R, (2) Estresse agudo (St+IR) (n = 8): estresse físico induzido 1 hora antes da I/R, (3) Simpatectomia (Symp+IR) (n = 8): a simpatectomia química foi realizada 24 horas antes da I/R e (4) Simpatectomia-estresse físico (Symp+St+IR) (n = 8): simpatectomia induzida antes do estresse físico e da I/R. A simpatectomia química foi realizada com 6-hidroxidopamina (100 mg/kg, SC). Em seguida, os corações foram isolados e colocados em aparato de Lagendorff por 30 minutos para induzir isquemia, seguida de reperfusão por 120 minutos. Os fluxos coronarianos, os parâmetros hemodinâmicos, o tamanho do infarto e os níveis de corticosterona plasmática foram investigados. Valores de p < 0,05 foram considerados significativos. Resultados: O estresse físico anterior à I/R pode melhorar a pressão desenvolvida no ventrículo esquerdo (PDVE) e duplo produto (DP), respectivamente, (63 ± 2 versus 42 ± 1,2, p < 0,05, 70 ± 2 versus 43 ± 2,6, p < 0,05) e reduzir o tamanho do infarto (22,16 ± 1,3 versus 32±1,4, p < 0,05) quando comparado com a I/R isoladamente. A simpatectomia química antes do estresse físico eliminou o efeito protetor do estresse físico sobre os danos cardíacos induzidos pela I/R (DP: 21 ± 6,6 versus 63 ± 2, p < 0,01) (PDVE: 38 ± 4,5 versus 43 ± 2,6, p < 0,01) (tamanho do infarto: 35 ± 3,1 versus 22,16 ± 1,3, p < 0,01). Conclusão: Os achados indicam que o estresse físico agudo pode funcionar como um estimulador pré-condicional e, provavelmente, a presença do sistema nervoso simpático é necessária.


Subject(s)
Animals , Male , Rats , Sympathetic Nervous System/physiopathology , Ischemic Preconditioning, Myocardial/methods , Heart/physiology , Myocardial Infarction/physiopathology , Corticosterone/blood , Reperfusion Injury/physiopathology , Rats, Wistar , Coronary Circulation/physiology
8.
Eur J Pharmacol ; 847: 61-71, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30684466

ABSTRACT

Following myocardial infarction, the heart undergoes a series of dramatic compensations which may later form a maladaptive picture characterized by ventricular dilation and pump failure. Among several opioid agents, morphine has been shown to confer protection against reperfusion injury and infarct size. Here, we sought to study the cardioprotective effect of post-infarct morphine treatment against left ventricular adverse remodeling. We induced myocardial infarction in male Sprague - Dawley rats by ligating left anterior descending artery and then, treated these animals with three different doses of morphine -0.3, 3 and 10 mg/kg (i.p.). The echocardiographic evaluation depicted improved cardiac performance and lesser chamber dilation in the animals that had received 3 mg/kg of morphine. Next, we studied the effect of 3 mg/kg morphine administration on left ventricular hemodynamics, infarct size, tissue architecture, changes in lung and heart weight, circulating TNF-α level and post-MI mRNA expression of collagen-1, collagen-3, TGF-ß, TNF-α, MMP-2 and MMP-9. Five-day morphine administration markedly improved LV function, and also reduced infarct size, myocyte hypertrophy, fibrosis, index of infarct expansion, heart weight and serum TNF-α level. Moreover, morphine alleviated MI-induced increase in wet and dry lung weight. Morphine also altered the mRNA expression of fibrosis-related genes, TNF-α, MMP-2 and MMP-9. In conclusion, post-infarct morphine treatment can mitigate adverse remodeling and cardiac dysfunction after MI. Beside analgesic effect, we may be able to harvest benefits from the antifibrotic and anti-remodeling action of morphine in patients with the acute coronary syndrome.


Subject(s)
Heart Ventricles/drug effects , Morphine/pharmacology , Myocardial Infarction/drug therapy , Ventricular Dysfunction, Left/drug therapy , Ventricular Remodeling/drug effects , Animals , Collagen Type I/metabolism , Collagen Type III/metabolism , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Echocardiography/methods , Fibrosis/drug therapy , Fibrosis/metabolism , Heart Ventricles/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion/methods , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Ventricular Dysfunction, Left/metabolism
9.
Iran J Pharm Res ; 18(3): 1530-1542, 2019.
Article in English | MEDLINE | ID: mdl-32641961

ABSTRACT

Melissa officinalis has antioxidant and anti-inflammatory activities and is used in various diseases. Aim of the study: We investigated the role of M. officinalis extract (MOE) against ischemia-induced arrhythmia and heart injury after five days of reperfusion in an in-vivo rat model of regional heart ischemia. The leaf extract of M. officinalis was standardized through HPLC analysis. Adult male Sprague-Dawley rats (n = 32) were subjected to 30 min of ischemia by occlusion of the left anterior descending coronary artery followed by 5 days of reperfusion. The rats (n = 8 in each group) were randomized to receive vehicle or M. officinalis as follows: group I served as saline control with ischemia, groups II, III and IV received different doses of MOE- (25, 50 and 100 mg/kg, respectively), by oral gavage daily for 14 days prior to ischemia. Administration of M. officinalis significantly improved ischemia/reperfusion (I/R)-induced myocardial dysfunction by reduction of infarct size, also, during the ischemic period, ventricular tachycardia, and ventricular ectopic beats episodes decreased as compared with that of the control group. Stabilized ST segment changes and QTc shortening increased the R and T wave amplitudes and the heart rate during ischemia. The extract also caused significant elevations in serum superoxide dismutase (SOD) activity as well as a significant decrease in serum cardiac troponin I (CTnI), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels, 5 days after reperfusion. MOE-100mg/kg was the effective dose. Cinamic acid (21.81 ± 1.26 mg/gr) was the main phenolic compound of plant sample. The ethanol extract of M. officinalis was observed to exhibit cardioprotective effects against I/R injury, probably due to antioxidant properties. The results indicate that MOE has antioxidant and cardio-protective effects against ischemia-induced arrhythmias and ischemia-reperfusion induced injury as was reflected by reduction of infarct size and cardiac injury biomarkers. These data support the potential uses of M. officinalis in the treatment of heart ischemia- reperfusion disorders and even developing new anti- arrhythmias drugs after further investigations.

10.
Surg Innov ; 26(1): 21-26, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30477411

ABSTRACT

OBJECTIVES: Some degrees of postoperative cardiac adhesions occur in response to the first cardiac surgery in patients that may limit surgeons for subsequent operations and increase the risk of heart injury. In this article, we established a model of postoperative pericardial adhesions, and because vascular endothelial growth factor (VEGF) seems to initiate adhesion formation through inflammatory responses, we used an anti-VEGF antibody, that is, bevacizumab, to examine its effects on postoperative adhesion formation. METHODS: Twenty Wistar rats were divided in 2 groups: control and bevacizumab. After chest opening, pericardial sac was opened and the heart was fully exposed. In the bevacizumab group, bevacizumab (2.5 mg/kg) was applied locally on the heart and then the chest was closed. The control group received saline solution as placebo. After 42 days, high-sensitivity C-reactive protein in peripheral blood was measured, and re-sternotomy was performed to measure severity of pericardial adhesions. Then, the hearts were collected from all rats to evaluate percentage of CD-31-positive cells (as a marker of angiogenesis) using immunohistochemical staining. RESULTS: When the bevacizumab group was compared with the control group, we found that the mean score of adhesion (0.89 ± 0.38 vs 2.56 ± 0.41) and CD-31 expression (27.45 ± 3.75% vs 56.26 ± 1.98%) was decreased significantly after bevacizumab administration. However, we did not find any difference in high-sensitivity C-reactive protein levels of control and bevacizumab animals. CONCLUSION: In the current study, bevacizumab administration could effectively reduce adhesion formation after first sternotomy by preventing VEGF-induced angiogenesis through CD-31 downregulation.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Bevacizumab/pharmacology , Cardiac Surgical Procedures/adverse effects , Pericardium/pathology , Tissue Adhesions/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Animals , Biomarkers/metabolism , Cardiac Surgical Procedures/methods , Disease Models, Animal , Male , Pericardium/drug effects , Postoperative Complications/diagnosis , Postoperative Complications/drug therapy , Random Allocation , Rats , Rats, Wistar , Reference Values , Tissue Adhesions/etiology , Tissue Adhesions/pathology , Treatment Outcome
11.
Phytother Res ; 32(10): 1983-1991, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29917280

ABSTRACT

Cinnamomum zeylanicum (cinnamon) is a plant with potent antioxidant activity and has been used in traditional medicine for improvement of heart function. The effects of cinnamon bark ethanolic extract were investigated against ischemia-induced arrhythmias and heart injury in an in vivo rat model of regional heart ischemia. The extract was also standardized, and its antioxidant activity was evaluated. Adult male Sprague-Dawley rats were subjected to 30 min of ischemia by occlusion of the left anterior descending coronary artery followed by 5 days of reperfusion. Thirty-two animals were randomized to receive daily oral administration of vehicle or C. zeylanicum bark extract (intragastric, 50, 100, or 200 mg/kg) 14 days before ischemia. C. zeylanicum was standardized through HPLC analysis. Administration of cinnamon bark extract significantly improved ischemia/reperfusion-induced myocardial injury as evidenced by reduction of the infarct size. Also, during the ischemic period, ventricular tachycardia and ventricular ectopic beats episodes decreased as compared with that of the control group. The extract stabilized the ST segment changes and QTc shortening, decreased R-wave amplitude, and increased heart rate during ischemia. The extract also caused significant elevations in serum superoxide dismutase and glutation proxidase activities as well as a significant decrease in serum cardiac troponin I, lactate dehydrogenase, and malondialdehyde levels, 5 days after reperfusion. In HPLC analysis, the amounts of Cinamic acid, Methyl eugenol, and Cinnamaldehyde were 8.99 ± 0.5, 13.02 ± 1.8, and 14.63 ± 1.1 mg/g, respectively. The results show that the ethanolic extract of cinnamon bark is able to protect the heart against ischemia-reperfusion injury probably due to its antioxidant properties. Hence, it might be beneficial in these patients and this remedy might be used for preparation of new drugs.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Cinnamomum zeylanicum/chemistry , Myocardial Reperfusion Injury/drug therapy , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , Heart/drug effects , L-Lactate Dehydrogenase/blood , Male , Malondialdehyde/blood , Myocardium , Plant Bark/chemistry , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/blood , Troponin I/blood
12.
Gen Physiol Biophys ; 37(3): 345-352, 2018 May.
Article in English | MEDLINE | ID: mdl-29938680

ABSTRACT

Sleep is considered as a physiological regulator in the body. Gamma-aminobutyric acid (GABA) is a neurotransmitter that modulates sleep and affects cardiac functions. We evaluated effects of acute sleep deprivation (SD) on cardiac hemodynamic parameters, expression of pro-inflammatory cytokines, and Heat shock protein (Hsp70), serum level of lactate dehydrogenase (LDH) and prooxidant/antioxidant balance (PAB). Male Wistar rats were bilaterally cannulated in the central nucleus of amygdala (CeA) and saline or bicuculline was injected 24 hours prior to induction of 30 minute ischemia following 120 minute reperfusion. Forty-eight animals were randomly divided into four groups: Control (CONT), bicuculline (BIC), acute SD and bicuculline + acute sleep deprivation (BIC+SD). Animals in SD and BIC+SD groups were put in an aquarium for inducing sleep deprivation. SD attenuated LDH, pro-inflammatory cytokines and PAB; improved cardiac hemodynamic parameters and increased Hsp70 in non-infarcted area as compared to CONT. Administration of bicuculline increased LDH, pro-inflammatory cytokines and PAB, reduced cardiac hemodynamic parameters and Hsp70 as compared to CONT. Furthermore, bicuculline administration prior to acute sleep induction decreased SD effects on LDH, PAB, Hsp70, cardiac hemodynamic parameters and pro-inflammatory cytokines. Induction of SD prior to ischemia/reperfusion induces cardioprotection through suppressing inflammatory responses.


Subject(s)
Heart/physiopathology , Myocardium/metabolism , Receptors, GABA-A/metabolism , Reperfusion Injury/prevention & control , Sleep Deprivation/metabolism , Animals , Antioxidants/metabolism , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , Hemodynamics , Inflammation/metabolism , Interleukin-6/genetics , L-Lactate Dehydrogenase/metabolism , Male , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Sleep Deprivation/physiopathology , Tumor Necrosis Factor-alpha/genetics
13.
J Adv Pharm Technol Res ; 8(4): 131-137, 2017.
Article in English | MEDLINE | ID: mdl-29184844

ABSTRACT

The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001-1 µg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.

14.
Arq. bras. cardiol ; 108(5): 443-451, May 2017. tab, graf
Article in English | LILACS | ID: biblio-838732

ABSTRACT

Abstract Background: Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. Objective: This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Methods: Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). Results: The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Conclusion: Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury.


Resumo Fundamento: As doenças cardiovasculares são a principal causa de mortalidade e invalidez a longo prazo a nível mundial. Diversos estudos têm sugerido um efeito protetor da lactação na redução do risco para doenças cardiovasculares. Objetivo: Este estudo foi desenvolvido para avaliar os efeitos da gestação e da lactação sobre a vulnerabilidade do miocárdio ao insulto isquêmico. Métodos: Dezoito ratas foram divididas aleatoriamente em três grupos: isquemia-reperfusão (IR), no qual os corações de ratas virgens foram submetidos à IR (n = 6); lactantes, no qual as ratas amamentaram seus filhotes por 3 semanas e os corações maternos foram, em seguida, submetidos à IR (n = 6); e não lactantes, no qual os filhotes foram separados após o nascimento e os corações maternos foram submetidos à IR (n = 6). As medidas de desfecho incluíram frequência cardíaca (FC), pressão desenvolvida no ventrículo esquerdo (PDVE), duplo produto (DP), razão do tamanho do infarto sobre a área sob risco (TI/ASR %) e arritmias ventriculares - contração ventricular prematura (CVP) e taquicardia ventricular (TV). Resultados: O TI/ASR foi substancialmente menor no grupo de lactantes quando comparado ao grupo de não lactantes (13,2 ± 2,5 versus 39,7 ± 3,5, p < 0,001) e ao grupo IR (13,2 ± 2,5 versus 34,0 ± 4,7, p < 0,05). A avaliação das arritmias ventriculares induzidas pela IR indicou que o número de CVPs compostas na isquemia, e o número e a duração das TVs na isquemia e nos primeiros 5 minutos de reperfusão no grupo de não lactantes foram significativamente (p < 0,05) mais elevados do que os encontrados nos grupos IR e de lactantes. Conclusão: A lactação induziu o aparecimento precoce de efeitos cardioprotetores, enquanto ratas que não foram permitidas a amamentar seus filhotes se mostraram mais suscetíveis à lesão miocárdica por IR.


Subject(s)
Animals , Female , Pregnancy , Lactation , Myocardial Reperfusion Injury/prevention & control , Myocardial Ischemia/rehabilitation , Myocardial Infarction/prevention & control , Arrhythmias, Cardiac/prevention & control , Random Allocation , Rats, Sprague-Dawley , Ventricular Pressure/physiology , Models, Animal , Heart Rate/physiology , Myocardial Contraction/physiology
15.
Arq Bras Cardiol ; 108(5): 443-451, 2017 05.
Article in English, Portuguese | MEDLINE | ID: mdl-28444063

ABSTRACT

Background: Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. Objective: This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Methods: Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). Results: The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Conclusion: Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury.


Fundamento: As doenças cardiovasculares são a principal causa de mortalidade e invalidez a longo prazo a nível mundial. Diversos estudos têm sugerido um efeito protetor da lactação na redução do risco para doenças cardiovasculares. Objetivo: Este estudo foi desenvolvido para avaliar os efeitos da gestação e da lactação sobre a vulnerabilidade do miocárdio ao insulto isquêmico. Métodos: Dezoito ratas foram divididas aleatoriamente em três grupos: isquemia-reperfusão (IR), no qual os corações de ratas virgens foram submetidos à IR (n = 6); lactantes, no qual as ratas amamentaram seus filhotes por 3 semanas e os corações maternos foram, em seguida, submetidos à IR (n = 6); e não lactantes, no qual os filhotes foram separados após o nascimento e os corações maternos foram submetidos à IR (n = 6). As medidas de desfecho incluíram frequência cardíaca (FC), pressão desenvolvida no ventrículo esquerdo (PDVE), duplo produto (DP), razão do tamanho do infarto sobre a área sob risco (TI/ASR %) e arritmias ventriculares - contração ventricular prematura (CVP) e taquicardia ventricular (TV). Resultados: O TI/ASR foi substancialmente menor no grupo de lactantes quando comparado ao grupo de não lactantes (13,2 ± 2,5 versus 39,7 ± 3,5, p < 0,001) e ao grupo IR (13,2 ± 2,5 versus 34,0 ± 4,7, p < 0,05). A avaliação das arritmias ventriculares induzidas pela IR indicou que o número de CVPs compostas na isquemia, e o número e a duração das TVs na isquemia e nos primeiros 5 minutos de reperfusão no grupo de não lactantes foram significativamente (p < 0,05) mais elevados do que os encontrados nos grupos IR e de lactantes. Conclusão: A lactação induziu o aparecimento precoce de efeitos cardioprotetores, enquanto ratas que não foram permitidas a amamentar seus filhotes se mostraram mais suscetíveis à lesão miocárdica por IR.


Subject(s)
Lactation , Myocardial Infarction/prevention & control , Myocardial Ischemia/rehabilitation , Myocardial Reperfusion Injury/prevention & control , Animals , Arrhythmias, Cardiac/prevention & control , Female , Heart Rate/physiology , Models, Animal , Myocardial Contraction/physiology , Pregnancy , Random Allocation , Rats, Sprague-Dawley , Ventricular Pressure/physiology
16.
Kardiol Pol ; 75(6): 605-613, 2017.
Article in English | MEDLINE | ID: mdl-28181211

ABSTRACT

BACKGROUND: Ischaemic heart disease is the main cause of mortality in the world. After myocardial infarction (MI) cardiomyocytes apoptosis and ventricular remodelling have occurred. Apelin is a peptide that has been shown to exert cardioprotective effects. AIM: The aim of this study was to investigate the anti-apoptotic and anti-remodelling effects of [Pyr¹]apelin-13 in the rat model of post-MI. METHODS: Thirty-six male Wistar rats were randomly divided into three groups: (1) sham, (2) MI, and (3) MI treated with [Pyr¹] apelin-13 (MI+Apel). MI animals were subjected to 30-min ligation of the left anterior descending coronary artery (LAD) and 14 days of reperfusion. Twenty-four hours after LAD ligation, [Pyr¹]apelin-13 (10 nmol/kg/day, i.p.) was administered for five consecutive days. Hypertrophic parameters, left ventricular (LV) remodelling, and gene expression of Apel, apelin receptor (Apelr), Bax, caspase-3 (Casp-3), and Bcl-2 by real-time polymerase chain reaction and cardiomyocytes apoptosis by TUNEL immunostaining were assessed on day 14 post-MI. RESULTS: Post-infarct treatment with [Pyr¹]apelin-13 improved myocardial hypertrophic and LV remodelling parameters and led to a significant increase in the expression of Apel, Apelr, and Bcl-2, and a decrease in the expression of Bax and Casp-3. Furthermore, treatment with [Pyr¹]apelin-13 decreased cardiomyocyte apoptosis. CONCLUSIONS: [Pyr¹]apelin-13 has anti-hypertrophic, anti-remodelling, and anti-apoptotic effects via overexpression of Apel, Apelr, and Bcl-2 and reduces gene expression of Bax and Casp-3 in the infarcted myocardium, which can in turn lead to repair myocardium.


Subject(s)
Apoptosis/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Myocardial Infarction/drug therapy , Ventricular Remodeling/drug effects , Animals , Intercellular Signaling Peptides and Proteins/therapeutic use , Male , Myocardial Infarction/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Rats, Wistar
17.
Chronobiol Int ; 34(5): 587-600, 2017.
Article in English | MEDLINE | ID: mdl-28156163

ABSTRACT

Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.


Subject(s)
Myocardial Infarction/pathology , Sleep/physiology , Ventricular Remodeling , Animals , Body Weight , Corticosterone , Echocardiography , Gene Expression Regulation, Enzymologic , Heart/anatomy & histology , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Organ Size , Oxidative Stress , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
18.
Iran J Basic Med Sci ; 20(11): 1232-1241, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29299201

ABSTRACT

OBJECTIVES: Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nitric oxide (NO) and oxidative stress. MATERIALS AND METHODS: The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist) administration. All animals underwent 30 min of coronary occlusion (ischemia), followed by 2 hr reperfusion (IR). The five experimental groups (n=12) included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. RESULTS: Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS) gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. CONCLUSION: Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production.

19.
J Tehran Heart Cent ; 11(3): 123-138, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27956912

ABSTRACT

Background: Recently, stem cells have been considered for the treatment of heart diseases, but no marked improvement has been recorded. This is the first study to examine the functional and histological effects of the transplantation of human amniotic mesenchymal stromal cells (hAMSCs) in rats with heart failure (HF). Methods: This study was conducted in the years 2014 and 2015. 35 male Wistar rats were randomly assigned into 5 equal experimental groups (7 rats each) as 1- Control 2- Heart Failure (HF) 3- Sham 4- Culture media 5- Stem Cell Transplantation (SCT). Heart failure was induced using 170 mg/kg/d of isoproterenol subcutaneously injection in 4 consecutive days. The failure confirmed by the rat cardiac echocardiography on day 28. In SCT group, 3×106 cells in 150 µl of culture media were transplanted to the myocardium. At the end, echocardiographic and hemodynamic parameters together with histological evaluation were done. Results: Echocardiography results showed that cardiac ejection fraction in HF group increased from 58/73 ± 9% to 81/25 ± 6/05% in SCT group (p value < 0.001). Fraction shortening in HF group was increased from 27/53 ± 8/58% into 45/55 ± 6/91% in SCT group (p value < 0.001). Furthermore, hAMSCs therapy significantly improved mean diastolic blood pressure, mean arterial pressure, left ventricular systolic pressure, rate pressure product, and left ventricular end-diastolic pressure compared to those in the HF group, with the values reaching the normal levels in the control group. A marked reduction in fibrosis tissue was also found in the SCT group (p value < 0.001) compared with the animals in the HF group. Conclusion: The transplantation of hAMSCs in rats with heart failure not only decreased the level of fibrosis but also conferred significant improvement in heart performance in terms of echocardiographic and hemodynamic parameters.

20.
Acta Med Iran ; 53(8): 482-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26545993

ABSTRACT

Exposure to stress leads to physiological changes called "stress response" which are the result of the changes in the adrenomedullary hormone system, hypothalamus-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) activity. In the present study, the effects of chronic physical and psychological stress and also the role of sympathetic system effects in stress on ischemia/reperfusion (I/R) injuries have been studied in isolated rat heart. Rat heart was isolated and subjected to 30 min regional ischemia and 120 min reperfusion. The daily stress was induced for one week prior to I/R induction. Sympathectomy was done chemically by injection of hydroxyl-dopamine prior to stress induction. There were no significant changes in heart rate and Coronary Flow between groups. Left ventricular developed pressure (LVDP) and rate product pressure (RPP) in both physical and psychological stress groups decreased significantly compared to those in control group (P<0.05), but there was no significant difference between physical and psychological stress groups. Infarct size significantly increased in both physical and psychological stress groups and control group(P<0.05. Sympathectomy before induction of stress led to the elimination of the deleterious effects of stress as compared with stress groups (P<0.05). These results show that induction of chronic physical and psychological stress prior to ischemia/reperfusion causes enhancement of myocardial injuries and it seems that increased sympathetic activity in response to stress is responsible for these adverse effects of stress on ischemic/reperfused heart.


Subject(s)
Reperfusion Injury/physiopathology , Stress, Psychological/complications , Sympathetic Nervous System/metabolism , Animals , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...